
20 CROSSTALK The Journal of Defense Software Engineering October 2005

High-assurance systems are used in
environments where failure can

cause security breaches or even a loss of
life [1]. Examples include avionics,
weapon controls, intelligence gathering,
and life-support systems. Before such a
system can be deployed, there must exist
convincing evidence that it can support
critical safety as well as security properties.

The avionics community has
addressed the need for safety-critical sys-
tems by developing the DO-178B and
DO-255 standards, which provide a set of
guidelines for the design, analysis, and
evaluation of system safety [2, 3]. Though
adequate for the safety evaluation of air-
borne systems, neither is sufficient to
address the security concerns of critical
security systems such as those that protect
national security. Such high-assurance sys-
tems require the rigorous specification
and implementation requirements out-
lined in the Common Criteria (CC) [4].

The CC is a jointly developed evalua-
tion standard for software that was creat-
ed by a consortium representing the
United States, United Kingdom,
Germany, France, Canada, and the
Netherlands. The purpose of the CC is to
standardize evaluation of security features
in software, which allows, for example, the
comparison of different security solu-
tions. The CC achieves this by providing
guidelines for the design, analysis, and
evaluation of critical systems defined at
seven Evaluation Assurance Levels
(EALs). The higher the assurance level,
the stricter the requirements mandated by
the CC. At the highest levels (EAL 5-7),
the CC requires the use of formal meth-
ods, mathematical models, and proofs [1].

The level of difficulty and complexity
of formal verification increases in an
exponential manner with the number of
analyzed lines of code (LOC). Code bases
of over 100,000 LOC are considered to be

unverifiable [5]. The goal for a verifiable
software component is under 4,000 LOC
[6]. With this restriction on code destined
for EAL 5 certification or higher, the
design shift from monolithic code bases to
smaller modular components must occur.

A system designed specifically for
EAL 5-7 certification is the Multiple
Independent Levels of Security and Safety
(MILS) architecture [7]. The MILS
approach toward meeting the formal eval-
uation requirements of the CC is to sepa-
rate system functionality into smaller, indi-
vidually verifiable components. The MILS
architecture enables the enforcement of
system-wide information control policies
via mechanisms built into the kernel as
well as middleware components that cre-
ate the authorized communications paths
between applications.

One example of MILS middleware
security component is an application-level
message filter called a guard, or mediator.
Since MILS guards can be verified inde-
pendently with respect to other compo-
nents, they can be built once and used
within any MILS system that needs appli-
cation-level message filtering.

This article describes the MILS initia-
tive led by the Air Force Research
Laboratory (AFRL) with stakeholder
input from the Air Force, Army, Navy,
National Security Agency, Boeing,
Lockheed Martin, Objective Interface
Systems, Green Hills Software, Lynux
Works, Wind River, General Dynamics,
Raytheon, Rockwell Collins, MITRE, and
the University of Idaho. MILS technology
is targeted toward the C-130 Avionics
Modernization Program, F/A-22, F-35,
C-130, Commanche, global positioning
system, the Joint Tactical Radio System

The MILS Architecture for a 
Secure Global Information Grid

Dr. W. Scott Harrison, Dr. Nadine Hanebutte, Dr. Paul W. Oman, and Dr. Jim Alves-Foss
Center for Secure and Dependable Systems

Multiple Independent Levels of Security and Safety (MILS) is a joint research effort between academia, industry, and gov-
ernment to develop and implement a high-assurance, real-time architecture for embedded systems. The goal of the MILS archi-
tecture is to ensure that all system security policies are non-bypassable, evaluatable, always invoked, and tamper-proof. Using
these formally proven security policies guarantees information flow control, data isolation, predictable process control, damage
limitation, and resource availability. As applications are not considered trustworthy components, information flow control needs
to be performed by entities external to the applications. This approach allows for the integration of legacy applications that do
not necessarily have security integrated into them. Therefore, the MILS architecture creates an environment that adds safe-
guards to previously insecure applications, allowing the integration of possibly insecure applications into a secure environment.
To accomplish this in the MILS architecture, guards are placed between communicating entities to act as message content fil-
ters and enforce information flow control. This article discusses issues concerning design and implementation of MILS compo-
nents for message routing and guarding on a secure Global Information Grid facilitating net-centric warfare and defense.

Figure 1: The MILS Architecture

F

Separation

Kernel

Guard MMR A

12

Separation

Kernel

B MMR Guard

56

3 4Network

Partitions

Processes

Logical Connection

MILS

Hosts

Figure 1: The MILS Architecture

 



The MILS Architecture for a Secure Global Information Grid

October 2005 www.stsc.hill.af.mil 21

and the LandWarrior Program [8]. A pro-
totype proof-of-concept of the system
described in this article has been imple-
mented within an embedded system at the
University of Idaho.

This technology is essential for the
Global Information Grid (GIG). The
GIG is envisioned as a globally connected
set of computer systems and software [9].
Object-oriented communications proto-
cols (such as those we describe in this arti-
cle) are vital to such a system [10]. Further,
as the information on the grid will consist
of many security classification levels, it
will be absolutely necessary to control the
information that flows through the GIG.
The MILS architecture allows exactly that.

The MILS Architecture
MILS is a verifiable, secure architecture
for executing different security-level
processes on the same high-assurance sys-
tem. The MILS architecture accomplishes
this by providing two types of separation.
MILS enforces a separation policy that
strictly controls communication between
processes of different security levels. This
prevents, for instance, a top-secret process
from communicating with an unclassified
process. Further, MILS separates tradi-
tional kernel-level security functionalities
into external modular components that
are small enough for rigorous evaluation
using formal methods. Verifiable secure
systems can then be built from multiple,
independently developed and certified
components.

The foundational component of
MILS is the separation kernel (SK). The
SK segregates processes and their
resources into isolated execution spaces
called partitions. Processes running in dif-
ferent partitions can neither communicate
nor infer each other’s presence unless
explicitly permitted by the SK. The SK
enforces compliance to information flow
policies via the MILS message routing
(MMR) component. The primary function
of the MMR is to route communication
between applications in different parti-
tions if that communication is allowed by
the policies of the system [11]. If not, the
MMR will not permit communication
between the partitions.

In conjunction with the MMR, which
simply fulfills routing functionalities on
messages between partitions, guards
enforce detailed, protocol-specific poli-
cies. A guard exists for each application-
level protocol supported in a MILS sys-
tem. If a guard determines that the con-
tent of a message does not comply with
information flow policy, the guard will
notify the MMR that will then disallow the

communication attempt or take action
based on security policy. Steps one
through six in Figure 1 show the path of a
message within a MILS architecture from
the sending process (A) to the receiving
process (B).

The advantage of using the MMR and
guards is that the system does not have to
trust the applications to conform to secu-
rity policies. The MMR (and later, the
guard) will enforce these policies. Thus, it
is possible to have a secure MILS system
while running untrusted applications with-
in the partitions. This is because the SK
prevents any other possible partition com-
munication.

Because of the separation of responsi-
bilities between message routing and mes-
sage content filtering for each protocol,

the individual components (the MMR and
multiple guards) can be independently ver-
ified. Verification is only possible because
the guards and MMR have distinct and
well-defined functionalities. Neither acci-
dental nor malicious communication
attempts that violate system policy will be
successful.

Many communication protocols were
not designed to provide artifacts that allow
systematic security policy violation han-
dling such as proper error messages. In
general, most protocols were not written
with security as an objective, and thus,
there are typically no error messages that
are security-specific. As an example, con-
sider two clients: a client classified as Secret
requesting top-secret information, and a
client classified as top-secret requesting the
same information. Further, assume that

there is an error from both clients in the
request message (perhaps the query was
incorrectly formed). Generally in this situ-
ation, a single error message would be
returned to both clients. However, in many
systems, this would not be correct behav-
ior; we may not wish for the secret client to
know that it was contacting a valid server
at all, as this gives the client information
about the state of the system that might
invalidate security policy. Thus, there is a
need, not generally implemented in most
protocols, for security-specific error mes-
sages that do not reveal information about
the state of a system.

Therefore, the MMR also has to deter-
mine which error messages are relayed
back to the sender due to security policy
violations without disrupting the overall
execution of the communication initiator.
A challenge similar to that of the proper
relaying of error messages is that of inte-
grating legacy software into a MILS sys-
tem. This is because one of the design
goals of a MILS architecture is trans-
parency, i.e., existing (legacy) applications
can be seamlessly integrated into a MILS
environment. The MMR and communica-
tion channel guards facilitate this trans-
parency.

Multi-Level Access Control
Multi-level secure (MLS) systems enforce
a high-level, inter-partition security policy
that dictates whether partitions with dif-
ferent clearances can communicate.
Traditionally, the military model of a
secure operating system includes a MLS
concept. The idea behind this concept is
that the system will be processing data
items that are classified at different levels
of security, and the information flow
security policy that prevents the transfer
of high-level classified information into
low-level objects must be preserved.
Therefore, we define a MLS system as one
that must be certified to process and out-
put data at multiple classification levels.
Classic security models such as the Bell-
LaPadula model [12] have been created to
specify the secure behavior of such MLS
systems. The problem with pure MLS sys-
tems is that they must be rigorously ana-
lyzed for security before they can be certi-
fied. Every portion of the MLS system
must be analyzed to ensure that it proper-
ly handles labeled data and that there is no
possible violation of the security policy.
Even with a Trusted Computing Base
architecture or reference monitor in place,
there is often too much to evaluate.

The MILS architecture was developed
to resolve the difficulty in certifying MLS
systems by separating out the security

“The MILS architecture
enables the enforcement

of system-wide
information control

policies via mechanisms
built into the kernel as

well as middleware
components that create

the authorized
communications paths
between applications.”



22 CROSSTALK The Journal of Defense Software Engineering October 2005

Software Security

mechanisms and concerns into manage-
able components. A MILS system isolates
processes into partitions, which define a
collection of data objects, code, and sys-
tem resources. These individual parti-
tions can then be evaluated separately.
This divide-and-conquer approach will
exponentially reduce the proof effort for
secure systems. For instance, a traditional
MLS policy may allow a secret partition
to send messages to a partition that has
both secret and top-secret clearance. An
additional application-specific transport
policy (i.e., a protocol-specific guard) is
needed to do this. The protocol-specific
guard policy specifies constraints on the
contents of messages sent between parti-
tions already allowed to communicate by
the MLS policy.

The MMR and SK can fulfill MLS
policies, while the protocol guards enforce
application-specific security policies that
may or may not be MLS policies; howev-
er, the SK and MMR do work in tandem
with the guard policies to provide fine-
grained access control of application-level
messages.

A MILS Database Server
Consider a multi-level secure database
application. This database would contain
entries of different security levels, e.g., top
secret, secret, classified, and unclassified.
Remote processes from different parti-
tions can invoke read and write methods
on this central database. However, if a
client process that is only classified to han-
dle secret data (e.g., Secret_Read()) attempts
to invoke a read method on top-secret data
(e.g., TopSecret_Read()) from the database
server, the request must either be denied
or the data must be downgraded from

top-secret to secret prior to invoking the
requested read.

Polyinstantiation is another solution to
this problem; however, the challenges are
similar. Stated simply, polyinstantiation is a
situation in which users at different secu-
rity classifications receive (possibly) differ-
ent responses to the same queries. As an
example (adapted from [13]), consider that
we might have information regarding a
ship (S), an objective (O), and a destina-
tion (D). When an unclassified user
queries this information, he or she would
receive the information {S=U.S.S.
Starfish, O=Surveying, D=Hawaii}.

However, a top-secret level user would
receive the information {S=U.S.S.
Starfish, O=Spying, D=Coast of
Vietnam}, which presumably is the actual
state of the system. Such a solution comes
at the cost of having to create very large
databases and, as above, requires authenti-
cation of the true originator of a request.

Adding functionality to the database
partition to determine the true origin of
the request sender and to verify that the
sender has proper classification is a less
complex solution. Such a solution, howev-
er, would cause other problems:
a. The server’s code base might become

too large to evaluate formally.
b. Dedicated server processes will have

to be rewritten to account for every
type of data transaction (e.g., top
secret, secret, unclassified, etc.).

c. The server’s responses to valid but
unauthorized requests would need to
be added to the server’s code base.
The MILS solution is to allow the

MMR to parse the message before it
reaches the client, consult a policy, and

then either pass or reject the message after
an in-depth content analysis (which would
potentially still be necessary, although not
as thorough, for a system that incorpo-
rates polyinstantiation). Such an analysis
would have to account for routing policies
and protocol or content-specific policies.
This requires extra complexity in the
MMR, which increases with every applica-
tion-layer protocol supported in the MILS
system. Therefore, the MMR simply deter-
mines if the communication between par-
titions is allowed according to the security
policy and, if so, identifies the message
type and passes it on to the protocol-spe-
cific guard.

When a protocol guard receives a mes-
sage from the MMR, it parses the mes-
sage, consults a protocol-specific policy,
and then notifies the MMR whether to
allow or deny the message. If the message
is allowed by the protocol policy, the
MMR sends the message on to its destina-
tion. Otherwise, the MMR will perform
error handling. Figure 2 shows the logical
structure of the MMR and the protocol-
specific guard situated between client and
server applications.

To illustrate the previous example
within a system that contains a MMR and
protocol guard, assume that a secret level
client attempts to invoke the read method
of the top-secret database server. The
client encapsulates the request in a proto-
col-specific message and sends it. The
MMR determines that the client is allowed
to communicate with the server, recog-
nizes the message as being of a particular
protocol type, and routes it to the appro-
priate guard for analysis. The guard exam-
ines the request message and determines
that the client is not allowed to invoke the
read method of the top-secret database
object. Finally, the guard instructs the
MMR to discard the message, and possibly
generate an error message to be returned
to the client.

It should be noted that simply discard-
ing the message will generally be insuffi-
cient. As the client never receives a
response from the server, the client will
likely continue to make the same request.
Since this condition also occurs under nor-
mal circumstances such as those due to
temporary network outages, for example.
Thus, one function of the protocol-specif-
ic guard is to generate error packets, which
look like standard protocol error messages
that will be sent back to the client. If no
response is expected, obviously an error
message need not be returned.

An Example Policy
The Common Object Request Broker

igure 1: The MILS Architecture

Figure 2: Processes, the MMR, and Guard Message Path

Separation

Kernel

Guard MMR A

12

Separation

Kernel

B MMR Guard

56

3 4Network

Partitions

Processes

Logical Connection

MILS

Hosts

Client

MMR

Guard 1

MMR

Server

Conceptual

Message Path

Actual

Message Path

Figure 2: Processes, the MMR, and Guard
Message Path

“Thus, it is possible to
have a secure MILS
system while running
untrusted applications
within the partitions.

This is because the SK
[separation kernel]
prevents any other
possible partition 
communication.”



October 2005 www.stsc.hill.af.mil 23

The MILS Architecture for a Secure Global Information Grid

Architecture (CORBA) is a platform-inde-
pendent middleware architecture that
facilitates common client/server requests.
CORBA Object Request Brokers commu-
nicate via the General Inter-Orb Protocol
(GIOP). We will illustrate the MILS archi-
tecture with an example using a CORBA
GIOP guard.

Figure 3 illustrates an example of the
MMR and a protocol-specific guard (in
this case, a CORBA GIOP guard) working
together to enforce MLS and transport
policies. Client A is a CORBA client appli-
cation running in secret-level partition 1,
and client B is a CORBA client running in
unclassified-level partition 2. A CORBA
database object is running in multi-level
secure partition 3, which has both secret
and top-secret clearances. The database
object has two methods, Secret_Read()
and TopSecret_Read(), which require the
invoking client to have secret and top-
secret clearances, respectively.

The MLS policy for our example sys-
tem is that all processes can only commu-
nicate with processes of equal or higher
security clearances. The GIOP transport
policy extends the MMR’s MLS policy by
placing further constraints on the GIOP
messages sent between partitions the
MMR already allows to communicate.

As Figure 3 shows, the MMR allows
client A to communicate with the data-
base object because partitions 1 and 3
both have secret clearance. The GIOP
guard, however, restricts client A’s com-
munication with the database object to
only invocations of the Secret_Read()
method since A does not have the top-
secret clearance required to invoke
TopSecret_Read(). Client B is not allowed
to access the database object at all. The
MMR blocks all requests sent by B
because partition 2 does not have the
equivalent clearance(s).

Conclusion
The MILS architecture provides a cost-
effective and efficient way to build verifiable
secure systems. By separating security func-
tionality into modular components, high-
assurance systems can be engineered and
evaluated much more rapidly and independ-
ently. The MILS architecture is an approach
to system design that is supported by indus-
try and government. SKs, the lowest layer
of the MILS architecture, are already being
deployed by multiple real-time operating
system vendors [14]. Common criteria pro-
tection profiles are currently being devel-
oped for both the separation kernel [15]
and MILS middleware [16].

In this article, we have shown how a
security policy can be enforced on GIOP

messages sent between MILS partitions. A
policy that allows or disallows method
invocations based upon the requesting
client partition, the servant object, and the
object method also can be used. Our test-
bed implementations also show how
guards can allow a MILS system to
enforce both MLS and application-specif-
ic policies, thus providing fine-grained
access control of inter-partition commu-
nication.u

Clarification
This material is based on research spon-
sored by the AFRL and Defense
Advanced Research Projects Agency
(DARPA) under agreement number
F30602-02-1-0178. The U.S. government
is authorized to reproduce and distribute
reprints for governmental purposes
notwithstanding any copyright notation
thereon. The views and conclusions con-
tained herein are those of the authors and
should not be interpreted as necessarily
representing the official policies or
endorsements, either expressed or
implied, of AFRL and DARPA or the U.S.
government.

References
1. Alves-Foss, Jim, W. Scott Harrison,

Paul Oman, and Carol Taylor. “The
MILS Architecture for High
Assurance Embedded Systems.”
International Journal of Embedded
Systems 2005 (to appear).

2. Radio Technical Commission for
Aeronautics. “Software Considerations
in Airborne Systems and Equipment
Certification (RTCA DO-178B).”
Washington: RTCA Inc., 1992 <www.
rtca.org>.

3. Radio Technical Commission for
Aeronautics. “Requirements Specifi-
cation for Avionics Computer Re-
source (ACR) (RTCA DO-255).”

Washington: RTCS Inc., 2000 <www.
rtca.org>.

4. Common Criteria. CC Recognition
Arrangement: Common Criteria for
Information Technology Security
Evaluation (Vers. 2.1). 2004 <www.
commoncriteriaportal.org>.

5. Dransfield, Michael, et al. “MILS/
MLS Architecture for Deeply Embed-
ded Systems.” NetCentric Operations
2004.

6. MacLaren, Lee. “New Options in Em-
bedded Computing Security.” Boeing
Technical Excellence Conference, 2003.

7. Alves-Foss, Jim, Carol Taylor, and Paul
Oman. A Multi-Layered Approach to
Security in High Assurance Systems.
Proc. of the Hawaii International
Conference on System Sciences, 2004.

8. Adams, Charlotte. “Keeping Secrets in
Integrated Avionics.” Aviation Today
Mar. 2004 <www.ghs.com/down
load/articles/Aviation_today.pdf>.

9. Miller, Alyson, Mark Jefferson, and
Jeff Rogers. “Global Information Grid
Architecture.” The Edge: MITRE
Advanced Technology Newsletter July
2001 <www.mitre.org/news/the_
edge/july_01/miller.html>.

10. Ackermann, Robert. “Jointness De-
fines Priorities for the Defense De-
partment’s Global Grid.” Signal Mag-
azine Apr. 2001 <www.afcea.org/
signal/articles/anmviewer.asp?a=120
&z=115>.

11. Hanebutte, Nadine, et al. Software
Mediators for Transparent Channel
Control in Unbounded Environments.
Proc. of the 6th IEEE Information
Assurance Workshop, 2005.

12. Bell, D. Elliot, and Leonard LaPadula.
“Secure Computer System: Unified
Exposition and Multix Interpretation.”
ESD-TR-75-306. Bedford, MA:
MITRE Corp., 1976.

13. Jajodia, Sushil, and Ravi Sahndu.

Figure 3: An Example Policy

GIOP

GuardMMR

Partition 1 (Secret)

Client A

Partition 2 (Unclassified)

Client B

Partition 3

(Secret, Top-Secret)

Database Object

Secret_Read()

TopSecret_Read()

Figure 3: An Example Policy



Polyinstantiation Integrity in Multi-
level Relations. Proc of the IEEE
Symposium on Research into Security
and Privacy, 1990 <http://citeseer.
ist.psu.edu/121576.html>.

14 Ames, Ben. “Real-Time Software
Goes Modular.” Military and Aero-
space Electronics. 14.9 (2003):24
<www.ghs.com/download/articles/

GHS_RTOS_modular_090103.pdf>.
15. National Security Agency. U.S. Gov-

ernment Protection Profile for Sepa-
ration Kernels in Environments Re-
quiring High Robustness (Vers. 0.621).
Washington: NSA, 2004.

16. University of Idaho. MILS CORBA
Protection Profile, Vers. 0.52 (draft).
Moscow, ID: Univ. of Idaho, 2003.

Software Security

24 CROSSTALK The Journal of Defense Software Engineering October 2005

About the Authors

W. Scott Harrison,
Ph.D., is an assistant
professor in the Com-
puter Science Depart-
ment at the University
of Idaho, where he has

been since 1999. His current research
involves information assurance and
computer security issues. Harrison has
a doctorate in computer science from
Tulane University in New Orleans.

Center for Secure and 
Dependable Systems
University of Idaho
Moscow, ID 84844-1008
Phone: (208) 885-4114
Fax: (208) 885-7099
E-mail: harrison@cs.uidaho.edu

Nadine Hanebutte,
Ph.D., is a postdoctoral
fellow at the University
of Idaho’s Center for
Dependable and Secure
Systems. Her industrial

experience includes work at the
HypoVereinsbank in Munich, Ger-
many as a software engineer for the
risk-control department. Her current
research includes software security,
information assurance, and computer
security education. Hanebutte has a
Master of Science in computer science
from Otto von Guericke University in
Magdeburg, Germany, and a doctorate
from the University of Idaho.

Center for Secure and 
Dependable Systems
University of Idaho
Moscow, ID 84844-1008
Phone: (208) 885-4114
Fax: (208) 885-7099
E-mail: hane@cs.uidaho.edu

Paul W. Oman, Ph.D.,
is a professor of com-
puter science at the
University of Idaho. He
held the distinction of
University of Idaho

Hewlett-Packard Engineering Chair for
a period of seven years. Oman is a sen-
ior member in the Institute of
Electrical and Electronics Engineers
(IEEE) and is active in both the IEEE
and the IEEE Computer Society. He
has published more than 100 papers
and technical reports on computer
security, computer science education,
and software engineering. He is a past
assistant editor of IEEE Computer and
IEEE Software.

Center for Secure and 
Dependable Systems
University of Idaho
Moscow, ID 84844-1008
Phone: (208) 885-4114
Fax: (208) 885-7099
E-mail: oman@cs.uidaho.edu

Jim Alves-Foss, Ph.D.,
is an associate profes-
sor of computer sci-
ence at the University
of Idaho. He also
serves as the director of

the University of Idaho Center for
Secure and Dependable Systems,
which focuses on information assur-
ance education and research. His cur-
rent research involves the use of for-
mal methods for protocol analysis and
security policy verification.

Center for Secure and 
Dependable Systems
University of Idaho
Moscow, ID 84844-1008
Phone: (208) 885-4114
Fax: (208) 885-7099
E-mail: jimaf@cs.uidaho.edu

Get Your Free Subscription

Fill out and send us this form.

309 SMXG/MXDB 

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:________________________________________________________________________

RANK/GRADE:_____________________________________________________

POSITION/TITLE:__________________________________________________

ORGANIZATION:_____________________________________________________

ADDRESS:________________________________________________________________

________________________________________________________________

BASE/CITY:____________________________________________________________

STATE:___________________________ZIP:___________________________________

PHONE:(_____)_______________________________________________________

FAX:(_____)_____________________________________________________________

E-MAIL:__________________________________________________________________

CHECK BOX(ES) TO REQUEST BACK ISSUES:
JUNE2004 c ASSESSMENT AND CERT.
JULY2004 c TOP 5 PROJECTS

AUG2004 c SYSTEMS APPROACH

SEPT2004 c SOFTWARE EDGE

OCT2004 c PROJECT MANAGEMENT

NOV2004 c SOFTWARE TOOLBOX

DEC2004 c REUSE

JAN2005 c OPEN SOURCE SW
FEB2005 c RISK MANAGEMENT

MAR2005 c TEAM SOFTWARE PROCESS

APR2005 c COST ESTIMATION

MAY2005 c CAPABILITIES

JUNE2005 c REALITY COMPUTING

JULY2005 c CONFIG. MGT. AND TEST

AUG2005 c SYS: FIELDG. CAPABILITIES

SEPT2005 c TOP 5 PROJECTS

To Request Back Issues on Topics Not
Listed Above, Please Contact <stsc.
customerservice@hill.af.mil>.


